Model Evaluation Functions

Regression

All regression evaluation metrics will follow the below request body structure.

Query Request:

{
    "select": [
        {
            "function": "[rmse|mae|rSquared]",
            "alias": "<alias_name> [optional string]",
            "parameters": {
                "ground_truth_property": "<attribute_name> [string]",
                "predicted_property": "<attribute_name> [string]"
            }
        }
    ]
}

Query Response:

{
    "query_result": [
        {
            "<function_name/alias_name>": "<evaluation_value> [float]"
        }
    ]
}

RMSE

Get the RMSE between a prediction attribute and a ground truth attribute.

Sample Request:

{
    "select": [
        {
            "function": "rmse",
            "alias": "error",
            "parameters": {
                "ground_truth_property": "FICO_actual",
                "predicted_property": "FICO_predicted"
            }
        }
    ]
}

Sample Response:

{
    "query_result": [
        {
            "error": 0.76
        }
    ]
}

back to top

MAE

Get the Mean Absolute Error between a prediction attribute and a ground truth attribute. This function takes an optional parameter aggregation that allows swapping the aggregation from "avg" to either "min" or "max". This can be helpful if you’re looking for extremes, as in the lowest or highest absolute error, respectively. Additionally, this functions supports optional params normalizationMax and normalizationMin that accept numbers and will perform min/max normalization on the values before aggregation if both params are provided.

Query Request:

{
    "select": [
        {
            "function": "mae",
            "alias": "<alias_name> [optional string]",
            "parameters": {
              "predicted_property": "<predicted_property_name> [string]",
              "ground_truth_property": "<ground_truth_property_name> [string]",
              "aggregation": "[avg|min|max] (default avg, optional)",
              "normalizationMin": "<value> [optional number]",
              "normalizationMax": "<value> [optional number]"
            }
        }
    ]
}

Sample Request:

{
    "select": [
        {
            "function": "mae",
            "alias": "error",
            "parameters": {
                "ground_truth_property": "FICO_actual",
                "predicted_property": "FICO_predicted"
            }
        }
    ]
}

Sample Response:

{
    "query_result": [
        {
            "error": 0.76
        }
    ]
}

back to top

R Squared

Get the R Squared value between a prediction attribute and a ground truth attribute.

Sample Request:

{
    "select": [
        {
            "function": "rSquared",
            "alias": "rsq",
            "parameters": {
                "ground_truth_property": "FICO_actual",
                "predicted_property": "FICO_predicted"
            }
        }
    ]
}

Sample Response:

{
    "query_result": [
        {
            "rsq": 0.94
        }
    ]
}

back to top

Binary Classification

Confusion Matrix

Calculates the confusion matrix for a classification model. For binary classifiers, users must specify a probability threshold to count a prediction as a positive class.

Query Request:

{
    "select": [
        {
            "function": "confusionMatrix",
            "alias": "<alias_name> [optional string]",
            "parameters": {
                "threshold": "<value [float]> [required only for binary classifiers]"
            }
        }
    ]
}

Query Response:

{
    "query_result": [
        {
            "<function_name/alias_name>": {
                "true_positive": "<count> [int]",
                "false_positive": "<count> [int]",
                "true_negative": "<count> [int]",
                "false_negative": "<count> [int]"
            }
        }
    ]
}

Sample Request: Calculate the confusion matrix for a binary classifier with a threshold of 0.5 (standard threshold for confusion matrix).

{
    "select": [
        {
            "function": "confusionMatrix",
            "parameters": {
                "threshold": 0.5
            }
        }
    ]
}

Sample Response:

{
    "query_result": [
        {
            "confusionMatrix": {
                "true_positive": 100480,
                "false_positive": 100076,
                "true_negative": 100302,
                "false_negative": 99142
            }
        }
    ]
}

back to top

Confusion Matrix Rate

Calculates the confusion matrix rates for a classification model. For binary classifiers, users must specify a probability threshold to count a prediction as a positive class.

Query Request:

{
    "select": [
        {
            "function": "confusionMatrixRate",
            "alias": "<alias_name> [optional string]",
            "parameters": {
                "threshold": "<value [float]> [required only for binary classifiers]"
            }
        }
    ]
}

Query Response:

{
    "query_result": [
        {
            "<function_name/alias_name>": {
                "true_positive_rate": "<rate> [float]",
                "false_positive_rate": "<rate> [float]",
                "true_negative_rate": "<rate> [float]",
                "false_negative_rate": "<rate> [float]",
                "accuracy_rate": "<rate> [float]"
            }
        }
    ]
}

Sample Request: Calculate the confusion matrix for a binary classifier with a threshold of 0.5 (standard threshold for confusion matrix).

{
    "select": [
        {
            "function": "confusionMatrixRate",
            "parameters": {
                "threshold": 0.5
            }
        }
    ]
}

Response:

{
    "query_result": [
        {
            "confusionMatrixRate": {
                "true_positive_rate": 0.5033513340213003,
                "false_positive_rate": 0.49943606583557076,
                "true_negative_rate": 0.5005639341644292,
                "false_negative_rate": 0.4966486659786997
            }
        }
    ]
}

back to top

Confusion Matrix Variants

If you only want a specific metric derived from a confusion matrix, you can use one of the following functions:

  • truePositiveRate

  • falsePositiveRate

  • trueNegativeRate

  • falseNegativeRate

  • accuracyRate

  • balancedAccuracyRate

  • f1

  • sensitivity

  • specificity

  • precision

  • recall

For example, to return the truePositiveRate:

{
    "select": [
        {
            "function": "truePositiveRate",
            "parameters": {
                "threshold": 0.5,
                "ground_truth_property":"class_a",
                "predicted_property":"ground_truth_a"
            }
        }
    ]
}

Response:

{
    "query_result": [
        {
            "truePositiveRate": 0.5033513340213003
        }
    ]
}

back to top

AUC

The Area Under the ROC Curve can also be computed for binary classifiers.

Sample Query:

{
    "select": [
        {
            "function": "auc",
            "parameters": {
                "ground_truth_property":"class_a",
                "predicted_property":"ground_truth_a"
            }
        }
    ]
}

Response:

{
    "query_result": [
        {
            "auc": 0.9192331426352897
        }
    ]
}

Multiclass Classification

Multiclass Accuracy Rate

Calculates the global accuracy rate.

Query Request:

{
    "select": [
        {
            "function": "accuracyRateMulticlass",
            "alias": "<alias_name> [optional string]"
        }
    ]
}

Query Response:

{
    "query_result": [
        {
            "accuracyRateMulticlass": "<rate> [float]"
        }
    ]
}

Example:

{
    "select": [
        {
            "function": "accuracyRateMulticlass"
        }
    ]
}

Response:

{
    "query_result": [
        {
            "accuracyRateMulticlass": 0.785
        }
    ]
}

back to top

Multiclass Confusion Matrix

Calculates the confusion matrix for a multiclass model in regards to a single clas. The predicted attribute and ground truth attribute must be passed as parameters.

Query Request:

{
    "select": [
        {
            "function": "confusionMatrixMulticlass",
            "alias": "<alias_name> [optional string]",
            "parameters": {
                "predicted_property": "<predicted_property_name>",
                "ground_truth_property": "<ground_truth_property_name>"
            }
        }
    ]
}

Query Response:

{
    "query_result": [
        {
            "<function_name/alias_name>": {
                "true_positive": "<count> [int]",
                "false_positive": "<count> [int]",
                "true_negative": "<count> [int]",
                "false_negative": "<count> [int]"
            }
        }
    ]
}

Example:

{
    "select": [
        {
            "function": "confusionMatrixMulticlass",
            "parameters": {
                "predicted_property": "predicted_class_A",
                "ground_truth_property": "gt_predicted_class_A"
            }
        }
    ]
}

Response:

{
    "query_result": [
        {
            "confusionMatrix": {
                "true_positive": 100480,
                "false_positive": 100076,
                "true_negative": 100302,
                "false_negative": 99142
            }
        }
    ]
}

back to top

Multiclass Confusion Matrix Rate

Calculates the confusion matrix rates for a multiclass classification model in regards to a single predicted class.

Query Request:

{
    "select": [
        {
            "function": "confusionMatrixRateMulticlass",
            "alias": "<alias_name> [optional string]",
            "parameters": {
                "predicted_property": "predicted_class_A",
                "ground_truth_property": "gt_predicted_class_A"
            }
        }
    ]
}

Query Response:

{
    "query_result": [
        {
            "<function_name/alias_name>": {
                "true_positive_rate": "<rate> [float]",
                "false_positive_rate": "<rate> [float]",
                "true_negative_rate": "<rate> [float]",
                "false_negative_rate": "<rate> [float]",
                "accuracy_rate": "<rate> [float]",
                "balanced_accuracy_rate": "<rate> [float]",
                "precision": "<rate> [float]",
                "f1": "<rate> [float]"
            }
        }
    ]
}

Example calculating the confusion matrix rates:

{
    "select": [
        {
            "function": "confusionMatrixRateMulticlass",
            "parameters": {
                "predicted_property": "predicted_class_A",
                "ground_truth_property": "gt_predicted_class_A"
            }
        }
    ]
}

Response:

{
    "query_result": [
        {
            "confusionMatrixRateMulticlass": {
                "true_positive_rate": 0.6831683168316832,
                "false_positive_rate": 0.015653220951234198,
                "true_negative_rate": 0.9843467790487658,
                "false_negative_rate": 0.31683168316831684,
                "accuracy_rate": 0.9378818737270875,
                "balanced_accuracy_rate": 0.8337575479402245,
                "precision": 0.8884120171673819,
                "f1": 0.7723880597014925
            }
        }
    ]
}

back to top

If you only want a specific value from the confusion matrix rate function, you can use one of the following functions:

  • truePositiveRateMulticlass

  • falsePositiveRateMulticlass

  • trueNegativeRateMulticlass

  • falseNegativeRateMulticlass

For example, to return the truePositiveRate:

{
    "select": [
        {
            "function": "truePositiveRateMulticlass",
            "parameters": {
                "predicted_property": "predicted_class_A",
                "ground_truth_property": "gt_predicted_class_A"
            }
        }
    ]
}

Response:

{
    "query_result": [
        {
            "truePositiveRate": 0.5033513340213003
        }
    ]
}

back to top

Multiclass F1

Calculates the components needed to compute a F1 score for a multiclass model.

In this example, the model has 3 classes: class-1, class-2, class-3 and the corresponding ground truth labels class-1-gt, class-2-gt, class-3-gt.

Query Request:

{
  "select": [
    {
      "function": "count",
      "alias": "count"
    },
    {
      "function": "confusionMatrixRateMulticlass",
      "alias": "class-1",
      "parameters": {
        "predicted_property": "class-1",
        "ground_truth_property": "class-1-gt"
      }
    },
    {
      "function": "countIf",
      "alias": "class-1-gt",
      "parameters": {
        "property": "multiclass_model_ground_truth_class",
        "comparator": "eq",
        "value": "class-1-gt"
      },
      "stage": "GROUND_TRUTH"
    },
    {
      "function": "confusionMatrixRateMulticlass",
      "alias": "class-2",
      "parameters": {
        "predicted_property": "class-2",
        "ground_truth_property": "class-2-gt"
      }
    },
    {
      "function": "countIf",
      "alias": "class-2-gt",
      "parameters": {
        "property": "multiclass_model_ground_truth_class",
        "comparator": "eq",
        "value": "class-2-gt"
      },
      "stage": "GROUND_TRUTH"
    },
    {
      "function": "confusionMatrixRateMulticlass",
      "alias": "class-3",
      "parameters": {
        "predicted_property": "class-3",
        "ground_truth_property": "class-3-gt"
      }
    },
    {
      "function": "countIf",
      "alias": "class-3-gt",
      "parameters": {
        "property": "multiclass_model_ground_truth_class",
        "comparator": "eq",
        "value": "class-3-gt"
      },
      "stage": "GROUND_TRUTH"
    }
  ]
}

Query Response:

{
  "query_result": [
    {
      "count": 7044794,
      "class-1-gt": 2540963,
      "class-2-gt": 2263918,
      "class-3-gt": 2239913,
      "class-1": {
        "true_positive_rate": 0.4318807475748368,
        "false_positive_rate": 0.3060401245073361,
        "true_negative_rate": 0.6939598754926639,
        "false_negative_rate": 0.5681192524251633,
        "accuracy_rate": 0.5994314383074935,
        "balanced_accuracy_rate": 0.5629203115337503,
        "precision": 0.4432575070302042,
        "f1": 0.437495178612114
      },
      "class-2": {
        "true_positive_rate": 0.42177322676881407,
        "false_positive_rate": 0.3514795196528837,
        "true_negative_rate": 0.6485204803471163,
        "false_negative_rate": 0.578226773231186,
        "accuracy_rate": 0.5756528863725469,
        "balanced_accuracy_rate": 0.5351468535579652,
        "precision": 0.3623427088234848,
        "f1": 0.38980575845890253
      },
      "class-3": {
        "true_positive_rate": 0.26144274353512836,
        "false_positive_rate": 0.2805894672521546,
        "true_negative_rate": 0.7194105327478454,
        "false_negative_rate": 0.7385572564648716,
        "accuracy_rate": 0.5737983254017079,
        "balanced_accuracy_rate": 0.4904266381414869,
        "precision": 0.3028268576818381,
        "f1": 0.2806172238153916
      }
    }
  ]
}

With this result, you can calculate the weighted F1 score by multiplying each classes’s F1 score by the count of the ground truth and dividing by the total count. In this example, that would be

(class-1.f1 * class-1-gt + class-2.f1 * class-2-gt + class-3.f1 * class-3-gt) / count

and with numbers:

(0.437495178612114 * 2540963 + 
    0.38980575845890253 * 2263918 + 
    0.2806172238153916 * 2239913) / 7044794

= 0.3722898785

back to top

Object Detection

Mean Average Precision

Calculates Mean Average Precision for an object detection model. This is used as measure of accuracy for object detection models.

threshold determines minimum IoU value to be considered a match for a label. predicted_property and ground_truth_property are optional parameters and should be the names of the predicted and ground truth attributes for the model. They default to "objects_detected" and "label" respectively if nothing is specified for these parameters.

Query Request:

{
    "select": [
        {
            "function": "meanAveragePrecision",
            "alias": "<alias_name> [Optional]",
            "parameters": {
                "threshold": "<threshold> [float]",
                "predicted_property": "<predicted_property> [str]",
                "ground_truth_property": "<ground_truth_property> [str]"
            }
        }
    ]
}

Query Response:

{
    "query_result": [
        {
            "<function_name/alias_name>": "<result> [float]"
        }
    ]
}

Example:

{
    "select": [
        {
            "function": "meanAveragePrecision",
            "parameters": {
                "threshold": 0.5,
                "predicted_property": "objects_detected",
                "ground_truth_property": "label"
            }
        }
    ]
}

Query Response:

{
    "query_result": [
        {
            "meanAveragePrecision": 0.78
        }
    ]
}

Bias

Bias Mitigation

Calculates mitigated predictions based on conditional thresholds, returning 0/1 for each inference. Note that this function returns null for inferences that don’t match any of the provided conditions.

Query Request:

{
    "select":
    [
        {
            "function": "biasMitigatedPredictions",
            "alias": "<alias_name> [Optional]",
            "parameters":
            {
                "predicted_property": "<predicted_property> [str]",
                "thresholds":
                [
                    {
                        "conditions":
                        {
                            "property": "<attribute_name> [string or nested]",
                            "comparator": "<comparator> [string] Optional: default 'eq'",
                            "value": "<string or number to compare with property>"
                        },
                        "threshold": "<threshold> [float]"
                    }
                ]
            }
        }
    ]
}

Query Response:

{
    "query_result": [
        {
            "<function_name/alias_name>": "<result> [int]"
        }
    ]
}

Example:

{
    "select":
    [
        {
            "function": "biasMitigatedPredictions",
            "parameters":
            {
                "predicted_property": "prediction_1",
                "thresholds":
                [
                    {
                        "conditions":
                        [
                            {
                                "property": "SEX",
                                "value": 1
                            }
                        ],
                        "threshold": 0.4
                    },
                    {
                        "conditions":
                        [
                            {
                                "property": "SEX",
                                "value": 2
                            }
                        ],
                        "threshold": 0.6
                    }
                ]
            }
        }
    ]
}

Response:

{
    "query_result":
    [
        {
            "SEX": 1,
            "biasMitigatedPredictions": 1
        },
        {
            "SEX": 2,
            "biasMitigatedPredictions": 0
        },
        {
            "SEX": 1,
            "biasMitigatedPredictions": 0
        }
    ]
}

back to top